File: control

package info (click to toggle)
chemps2 1.8.3-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 5,384 kB
  • sloc: cpp: 38,355; python: 1,116; f90: 215; makefile: 44; sh: 2
file content (187 lines) | stat: -rw-r--r-- 8,292 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
Source: chemps2
Section: libs
Priority: optional
Maintainer: Debichem Team <debichem-devel@lists.alioth.debian.org>
Uploaders: Sebastian Wouters <sebastianwouters@gmail.com>,
           Michael Banck <mbanck@debian.org>
Build-Depends: debhelper (>= 9),
               cmake (>= 2.8.11),
               libblas-dev,
               liblapack-dev,
               libhdf5-dev,
               dh-python,
               python-all (>= 2.7),
               python-setuptools,
               python-docutils,
               python-sphinx (>= 1.1),
               cython (>= 0.19),
               python-numpy,
               libpython-dev,
               libjs-mathjax,
               libjs-jquery,
               libjs-underscore
Standards-Version: 3.9.8
Homepage: http://sebwouters.github.io/CheMPS2/index.html
Vcs-Git: https://anonscm.debian.org/git/debichem/packages/chemps2.git
Vcs-Browser: https://anonscm.debian.org/cgit/debichem/packages/chemps2.git

Package: libchemps2-2
Architecture: any
Depends: ${shlibs:Depends},
         ${misc:Depends}
Suggests: chemps2-doc
Description: Spin-adapted DMRG for ab initio quantum chemistry
 chemps2 is a scientific library which contains a spin-adapted
 implementation of the density matrix renormalization group (DMRG)
 for ab initio quantum chemistry. This wavefunction method allows one
 to obtain numerical accuracy in active spaces beyond the capabilities
 of full configuration interaction (FCI), and allows one to extract
 the 2-, 3-, and 4-particle reduced density matrices (2-, 3- and 4-RDM)
 of the active space.
 .
 For general active spaces up to 40 electrons in 40 orbitals can be
 handled with DMRG, and for one-dimensional active spaces up to 100
 electrons in 100 orbitals. The 2-RDM of these active spaces can
 also be easily extracted, while the 3- and 4-RDM are limited to
 about 28 orbitals.
 .
 When the active space size becomes prohibitively expensive for FCI,
 DMRG can be used to replace the FCI solver in the complete active
 space self consistent field (CASSCF) method and the corresponding
 complete active space second order perturbation theory (CASPT2).
 The corresponding methods are called DMRG-SCF and DMRG-CASPT2,
 respectively. For DMRG-SCF the active space 2-RDM is required, and
 for DMRG-CASPT2 the active space 4-RDM.

Package: libchemps2-dev
Section: libdevel
Architecture: any
Depends: ${shlibs:Depends},
         ${misc:Depends},
         libchemps2-2 (= ${binary:Version})
Suggests: chemps2-doc
Description: C++ headers, static library, and symlink for libchemps2-2
 chemps2 is a scientific library which contains a spin-adapted
 implementation of the density matrix renormalization group (DMRG)
 for ab initio quantum chemistry. This wavefunction method allows one
 to obtain numerical accuracy in active spaces beyond the capabilities
 of full configuration interaction (FCI), and allows one to extract
 the 2-, 3-, and 4-particle reduced density matrices (2-, 3- and 4-RDM)
 of the active space.
 .
 For general active spaces up to 40 electrons in 40 orbitals can be
 handled with DMRG, and for one-dimensional active spaces up to 100
 electrons in 100 orbitals. The 2-RDM of these active spaces can
 also be easily extracted, while the 3- and 4-RDM are limited to
 about 28 orbitals.
 .
 When the active space size becomes prohibitively expensive for FCI,
 DMRG can be used to replace the FCI solver in the complete active
 space self consistent field (CASSCF) method and the corresponding
 complete active space second order perturbation theory (CASPT2).
 The corresponding methods are called DMRG-SCF and DMRG-CASPT2,
 respectively. For DMRG-SCF the active space 2-RDM is required, and
 for DMRG-CASPT2 the active space 4-RDM.
 .
 This package installs the C++ headers, static library, and symlink
 for libchemps2.

Package: chemps2-doc
Section: doc
Architecture: all
Depends: ${sphinxdoc:Depends},
         ${misc:Depends}
Description: Documentation of the libchemps2-2 package
 chemps2 is a scientific library which contains a spin-adapted
 implementation of the density matrix renormalization group (DMRG)
 for ab initio quantum chemistry. This wavefunction method allows one
 to obtain numerical accuracy in active spaces beyond the capabilities
 of full configuration interaction (FCI), and allows one to extract
 the 2-, 3-, and 4-particle reduced density matrices (2-, 3- and 4-RDM)
 of the active space.
 .
 For general active spaces up to 40 electrons in 40 orbitals can be
 handled with DMRG, and for one-dimensional active spaces up to 100
 electrons in 100 orbitals. The 2-RDM of these active spaces can
 also be easily extracted, while the 3- and 4-RDM are limited to
 about 28 orbitals.
 .
 When the active space size becomes prohibitively expensive for FCI,
 DMRG can be used to replace the FCI solver in the complete active
 space self consistent field (CASSCF) method and the corresponding
 complete active space second order perturbation theory (CASPT2).
 The corresponding methods are called DMRG-SCF and DMRG-CASPT2,
 respectively. For DMRG-SCF the active space 2-RDM is required, and
 for DMRG-CASPT2 the active space 4-RDM.
 .
 This is the common documentation package.

Package: chemps2
Section: science
Architecture: any
Depends: ${shlibs:Depends},
         ${misc:Depends},
         libchemps2-2 (= ${binary:Version})
Breaks: libchemps2-1 (<< 1.7-1~)
Replaces: libchemps2-1 (<< 1.7-1~)
Suggests: chemps2-doc
Description: Executable to call libchemps2-2 from the command line
 chemps2 is a scientific library which contains a spin-adapted
 implementation of the density matrix renormalization group (DMRG)
 for ab initio quantum chemistry. This wavefunction method allows one
 to obtain numerical accuracy in active spaces beyond the capabilities
 of full configuration interaction (FCI), and allows one to extract
 the 2-, 3-, and 4-particle reduced density matrices (2-, 3- and 4-RDM)
 of the active space.
 .
 For general active spaces up to 40 electrons in 40 orbitals can be
 handled with DMRG, and for one-dimensional active spaces up to 100
 electrons in 100 orbitals. The 2-RDM of these active spaces can
 also be easily extracted, while the 3- and 4-RDM are limited to
 about 28 orbitals.
 .
 When the active space size becomes prohibitively expensive for FCI,
 DMRG can be used to replace the FCI solver in the complete active
 space self consistent field (CASSCF) method and the corresponding
 complete active space second order perturbation theory (CASPT2).
 The corresponding methods are called DMRG-SCF and DMRG-CASPT2,
 respectively. For DMRG-SCF the active space 2-RDM is required, and
 for DMRG-CASPT2 the active space 4-RDM.
 .
 This package installs the executable which parses Hamiltonians in
 fcidump format, performs DMRG-SCF and DMRG-CASPT2 calculations as
 specified by the user.

Package: python-chemps2
Section: python
Architecture: any
Depends: ${python:Depends},
         ${shlibs:Depends},
         ${misc:Depends},
         libchemps2-2 (= ${binary:Version})
Suggests: chemps2-doc
Description: Python 2 interface for libchemps2-2
 chemps2 is a scientific library which contains a spin-adapted
 implementation of the density matrix renormalization group (DMRG)
 for ab initio quantum chemistry. This wavefunction method allows one
 to obtain numerical accuracy in active spaces beyond the capabilities
 of full configuration interaction (FCI), and allows one to extract
 the 2-, 3-, and 4-particle reduced density matrices (2-, 3- and 4-RDM)
 of the active space.
 .
 For general active spaces up to 40 electrons in 40 orbitals can be
 handled with DMRG, and for one-dimensional active spaces up to 100
 electrons in 100 orbitals. The 2-RDM of these active spaces can
 also be easily extracted, while the 3- and 4-RDM are limited to
 about 28 orbitals.
 .
 When the active space size becomes prohibitively expensive for FCI,
 DMRG can be used to replace the FCI solver in the complete active
 space self consistent field (CASSCF) method and the corresponding
 complete active space second order perturbation theory (CASPT2).
 The corresponding methods are called DMRG-SCF and DMRG-CASPT2,
 respectively. For DMRG-SCF the active space 2-RDM is required, and
 for DMRG-CASPT2 the active space 4-RDM.
 .
 This package installs the library for Python 2.